An ISO Certified/GLP Laboratory Operating in an Academic Setting: Pharmacokinetic Enhancements Combined with Targeted Drug Delivery

BIOMEDICAL RESEARCH FOUNDATION, ACADEMY OF ATHENS (BRFAA) www.bioacademy.gr

Constantin Tamvakopoulos, Ph.D., ctamvakop@bioacademy.gr

Pharmacology – Pharmacotechnology Laboratory, BRFAA, Athens, Greece

Bioanalytical laboratory supported studies

Discovery

Preclinical

Clinical

In vitro

- Plasma protein binding
- Transporter
- Inhibition Induction
- Metabolic stability
- Plasma-blood distribution

In vivo

- Salt form selection
- Formulation
- Dose range finding
- Tissue distribution

- Short-term (2 weeks, 4 weeks)TOX
- Long-term (3 months+)TOX
- Reproductive TOX
- Carcinoma studies
- Micronucleus studies
- Animal ADME
- Bioavailability (IV/Oral)

GLP

Photo TOX studies

- Single ascending dose (SAD), Multiple ascending dose (MAD)
- Metabolite assessment (MIST)
- Food effect
- Drug-drug interaction
- Comparator study
- Human ADME
- Population PK
- Special population study (renal Impaired, pediatric, etc.)
- Adaptive design clinical trial
- Bioequivalence

GCP

Non-GLP

OF ATHEMS

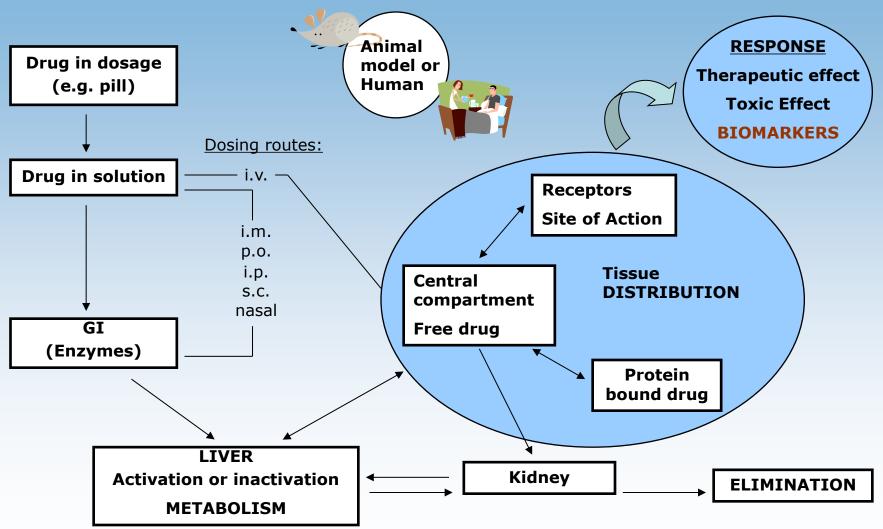
ACADEMY (

DIVISION OF PHARMACOLOGY - PHARMACOTECHNOLOGY

The laboratory operates according to the Good Laboratory Practice (GLP) standards and has been awarded an ISO/IEC 17025:2005 certificate.

The lab is equipped with Hybrid system of Liquid Chromatography – Mass Spectroscopy of triple quadrupole – Ion trap (LC-MS/MS), and all the other equipment that are required to perform bioanalysis and validation of drugs.

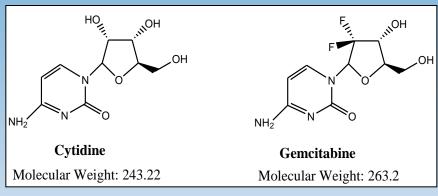
- Qualitative/ Quantitative analysis of drugs in biological fluids/tissues
- Pharmacokinetics (PK) of drugs in pre-clinical/clinical stages
- Drug metabolism
- Bioavailability and bioequivalence studies
- Quantitative determination of biomarkers (*e.g.* peptides, proteins) in various matrices (*e.g.* plasma)

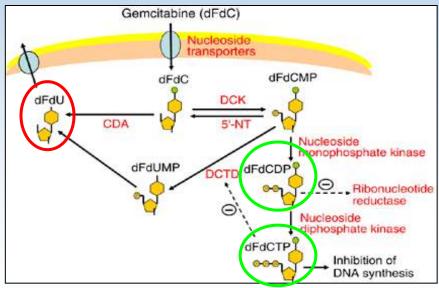


Pharmacokinetics and Drug Metabolism Background

The LADMER system

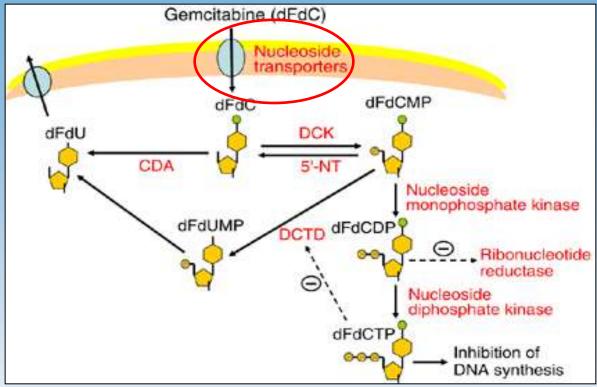
(Liberation, Absorption, Distribution, Metabolism, Elimination and Response)





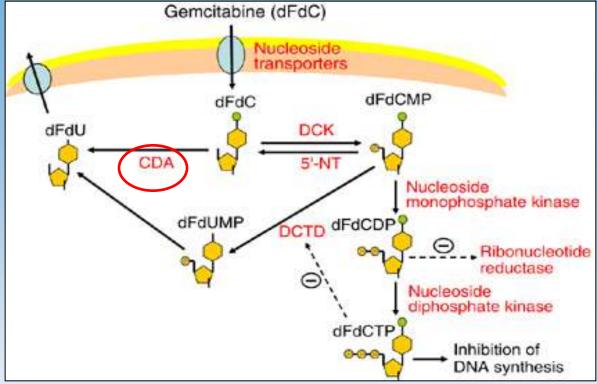
- Potent anticancer agent used for the treatment of several solid tumors such as colon, lung, pacreatic cancer
- Transferred into the cell by nucleoside transporters, undergoes phosphorylation and blocks DNA synthesis
- Main limitation: Rapid metabolic inactivation through deamination and formation of dFdU
- Improving gemcitabine poor pharmacokinetics has become a field itself

Gemcitabine



Ueno et al, British Journal of Cancer (2007) 97, 145-151

Gemcitabine Pharmacogenomics


Ueno et al, British Journal of Cancer (2007) 97, 145–151

- Several studies suggest that nucleoside transporter expression in tumor tissues may be a good predictive marker of outcome in cancer patients receiving gemcitabine.
- The most common form of gemcitabine induced resistance is the one related to nucleoside transporter deficiency

Gemcitabine Pharmacogenomics

Ueno et al, British Journal of Cancer (2007) 97, 145-151

- CDA overexpression in tumor tissues might reduce the antitumor efficacy of this drug
- An in vitro study has demonstrated resistance to gemcitabine in cells overexpressing CDA
- Gemcitabine inactivation is the major impediment in its therapeutic use

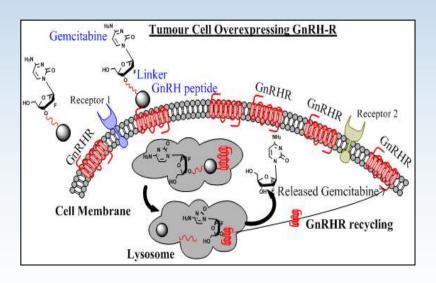
Gemcitabine prodrug development

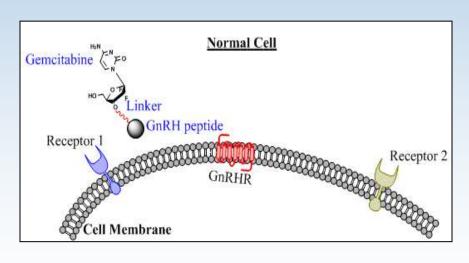
Designed gemcitabine prodrugs that would:

- 1) Reduce gemcitabine's metabolic inactivation
- → gemcitabine prodrugs can be designed specifically to affect its interaction with cytidine deaminase
- 2) lead gemcitabine specifically to the tumor site
- → through conjugation to a peptide with a strong affinity for a cell surface receptor over-expressed in the tumor cell.
- 3) Provide gemcitabine an alternative entrance route

 → through conjugation with a peptide that could enter the cell using an alternative route (e.g. a GPCR)

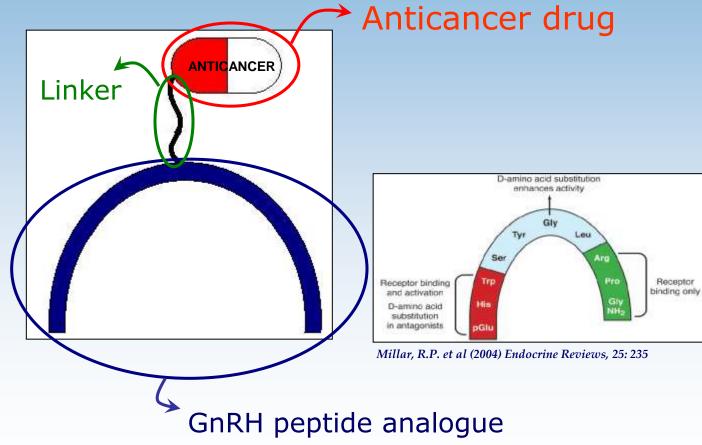
Peptides have taught us a great deal on how to target a receptor – The extrapituitary implication of GnRH in Cancer


- In advanced prostate cancer, after ADT, androgen receptor does not depend on stimulation by androgens (GnRH agonist therapy through the pituitary) leading to androgen independent state
- GnRH Receptors are expressed in various cancer cells related to the reproductive system (**Prostate**, Ovarian, Breast)
- GnRH-R gene expression is upregulated in patients with androgen-independent CaP
 - → Opportunity to treat cancer by targeting the GnRH Receptor beyond the pituitary directly on the tumor



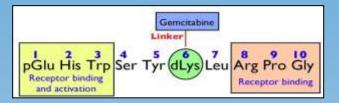
Tumor cell targeted therapy using GnRH conjugates

- GnRH conjugate = GnRH analogue + linker + small molecule anticancer drug
- GnRH Receptor is a GPCR
- → It can internalize into the cell together with its ligand upon activation
- Conjugation → Delivery of active drug selectively in cancer cells

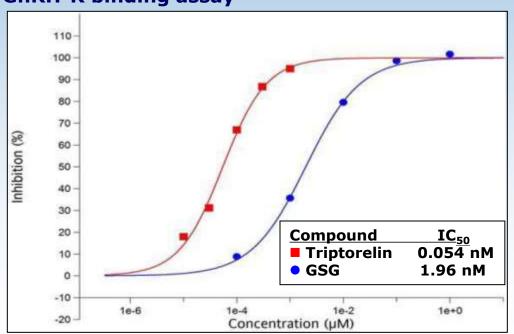


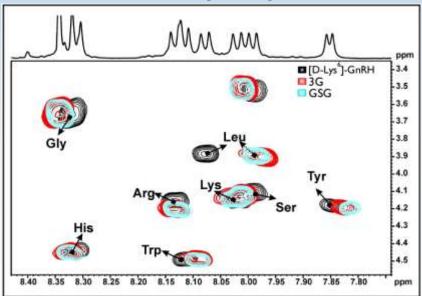
Targeted therapy using GnRH conjugates Chemotherapeutic peptide conjugates

 GnRH conjugate = GnRH analogue + linker + small molecule anticancer drug



Evaluation of GnRH-gemcitabine conjugates


 Several GnRH-gemcitabine analogues have been synthesized and tested so far including different linkers and different conjugation sites

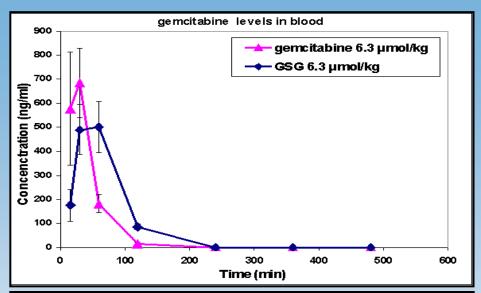

Evaluation in cell cultures

IC ₅₀ (nM)	Gemcitabine	3G	3G ₂	GSG	GSG ₂
DU145	231 ± 34	1171 ± 83	663 ± 273	308 ± 170	439 ± 217
РС3	585 ± 68	1161 ± 130	729 ± 193	670 ± 352	786 ± 125

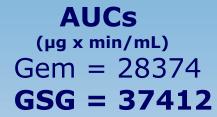
GnRH-R binding assay

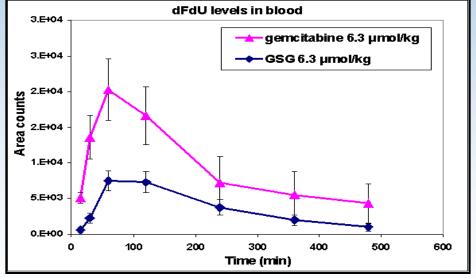
Superimposed 2D-NMR

Measuring intracellular levels of gemcitabine, dFdU


Incubated 10µM of Gemcitabine and Gemcitabine-GnRH conjugate in DU145 cells for 1,4,8 hr

- ightarrow gemcitabine degrades rapidly forming dFdU
- ightarrow GSG slowly forms gemcitabine
- → incubation with gemcitabine leads to higher dFdU levels in comparison to dFdU formed from GSG suggesting a "protective" effect of GSG on gemcitabine's rapid metabolic inactivation

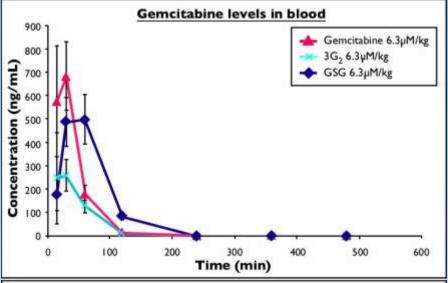




PK studies of GSG vs gemcitabine in mice

→ gemcitabine levels

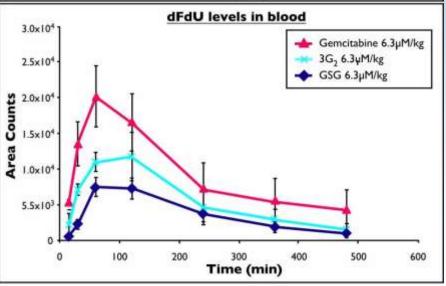
→ dFdU (=inactive met.) levels


AUCs (Area Counts/min) $Gem = 4.53 \times 10^{6}$ $GSG = 1.79 \times 10^{6}$

- <u>GSG</u> → High gemcitabine AND low dFdU levels

PK studies of GnRH- gemcitabine conjugates in mice

→ gemcitabine levels


AUCs

(µg x min/mL)

Gem = 28374

3G2 = 13864

GSG = 37412

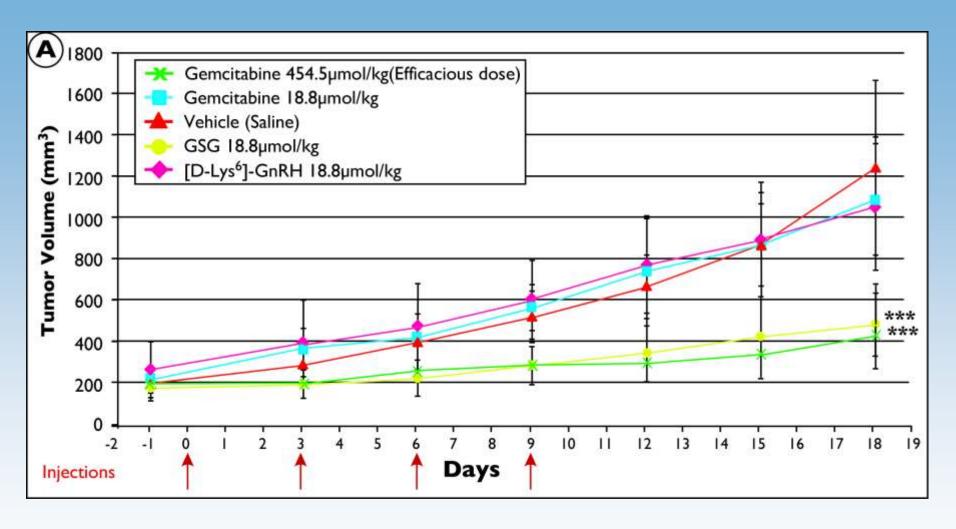
→ dFdU (=inactive met.) levels

AUCs

(Area Counts/min)

 $Gem = 4.53 \times 10^6$

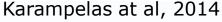
 $3G2 = 2.76 \times 10^6$


 $GSG = 1.79 \times 10^6$

- <u>GSG</u> → High gemcitabine AND low dFdU levels

Efficacy of GSG in DU145 xenografted mice

- DU145 cells were subcutaneously injected in NOD-SCID mice
- Treatment started when tumors were ~250 mm³



Summary – Future Experiments and Plans

- Novel GnRH-gemcitabine conjugates were synthesized and evaluated against prostate cancer models
- The lead compound, GSG, shows a potent anticancer effect that appears to be associated with a dual mode of action:
 - improved efficacy due to reduced metabolic inactivation of gemcitabine
 - 2) targeted delivery to cancer cells over-expressing the GnRH-R
 - 3) Can enter the cell through a different route (GnRH-R)

Pharmacology-Pharmacotechnology (Current/Past members)

- -Theodoros Karampelas MSc
- -Katerina Pyrillou MSc
- -Eva Kouvari MSc
- -Dr Orestis Argyros
- -Dr Olga Tsigkou
- -Dr Panagiwta Agrafiotou
- -Dr Alexandros Siskos
- -Dr Theodora Katsila
- -Dr Sophia Hatziieremia
- -Irene Baira MSc
- -Nikolaos Lemonakis Msc
- -Zacharias Sofianos Msc
- -Dr. Kostas Dimas
- -Dr Panayotis Pantazis

University of Ioannina

- -Dr Demosthenes Fokas
- -Dr Andreas Tzakos
- -Dr Nisar Sayyad
- -Dr Theodoros Fotsis
- -Dr Savvas Christoforidis
- University of Crete
- -Dr Georgios Liapakis

University of Patras

- -Dr Theodore Tselios
- -Dr Ioannis Matsoukas

University of Pretoria

-Prof Robert Millar

University of Hull

-Dr Kevin Morgan

Funding Agencies

- -European Commission-FP7
- -GGET, Leventis Foundation
- -MJ Fox Foundation

Acknowledgements

BRFAA

- -Prof Argyris Efstratiadis
- -Prof Semie Kapetanaki
- -Prof Dimitrios Thanos
- -Dr Evangelos Andreakos
- -Dr Apostolos Klinakis
- -Dr Nikos Kostomitsopoulos
- -Dr Paschalis Sideras
- -Dr Dimitris Vasilatis
- -Dr Tasos Gaitanis
- -Dr Zoi Kournia
- -Dr Stamatis Pagakis
- -Dr Kostas Syrigos
- -Dr Achilleas Chatzioannou
- -Dr Dimitris Stellas
- -Dr Evi Gkeka
- -Dr Ersi Tsellou
- -Dr Kostas Vougas

BRSC Fleming

- -Dr Martina Samiotaki
- University of Athens
- -Prof Leandros Skaltsounis
- -Prof Emanouel Mikros
- -Prof Nikos Papadopoulos
- University of Thrace
- -Prof Georgios Kolios Demokritos

Dr Georgios Kordas

THANKS!

